

Bioorganic & Medicinal Chemistry

Bioorganic & Medicinal Chemistry 15 (2007) 7738-7745

Hologram QSAR model for the prediction of human oral bioavailability

Tiago L. Moda,^a Carlos A. Montanari^b and Adriano D. Andricopulo^{a,*}

^aLaboratório de Química Medicinal e Computacional, Centro de Biotecnologia Molecular Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, 13566-970 São Carlos, SP, Brazil ^bGrupo de Química Medicinal de Produtos Naturais, Instituto de Química de São Carlos, Universidade de São Paulo, 13566-970 São Carlos, SP, Brazil

> Received 2 June 2007; revised 22 August 2007; accepted 28 August 2007 Available online 1 September 2007

Abstract—A drug intended for use in humans should have an ideal balance of pharmacokinetics and safety, as well as potency and selectivity. Unfavorable pharmacokinetics can negatively affect the clinical development of many otherwise promising drug candidates. A variety of in silico ADME (absorption, distribution, metabolism, and excretion) models are receiving increased attention due to a better appreciation that pharmacokinetic properties should be considered in early phases of the drug discovery process. Human oral bioavailability is an important pharmacokinetic property, which is directly related to the amount of drug available in the systemic circulation to exert pharmacological and therapeutic effects. In the present work, hologram quantitative structure—activity relationships (HQSAR) were performed on a training set of 250 structurally diverse molecules with known human oral bioavailability. The most significant HQSAR model ($q^2 = 0.70$, $r^2 = 0.93$) was obtained using atoms, bond, connection, and chirality as fragment distinction. The predictive ability of the model was evaluated by an external test set containing 52 molecules not included in the training set, and the predicted values were in good agreement with the experimental values. The HQSAR model should be useful for the design of new drug candidates having increased bioavailability as well as in the process of chemical library design, virtual screening, and high-throughput screening.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The challenges facing the pharmaceutical industry are tremendous at every step of the drug discovery and development process. The high number of compounds emerging from combinatorial chemistry and high-throughput medicinal chemistry programs is increasing the demand for new compounds that need to be screened in a wide range of biological assays. The classical strategy to screen thousands of compounds solely for potency and selectivity brought the pharmaceutical industry to face the reality of disproportionate attrition in advanced stages of clinical development, because many attractive compounds do not possess the required pharmacokinetic properties of a drug. New chemical entities (NCEs) expected to advance into clinical trials should have an ideal balance of pharmacodynamic and

Keywords: ADME; Pharmacokinetics; In silico modeling; QSAR; Drug design.

pharmacokinetic properties.² Problems with absorption, distribution, metabolism, and excretion (ADME) have been identified as a major cause of drug candidate failure in late stages of the pharmaceutical R&D process.^{3,4}

The early evaluation of ADME properties in drug research has driven the need for large-scale screening methods. In vitro and in vivo ADME assays (e.g., Caco-2, PAMPA, MDCK, assessment of absorption, metabolism studies) are lengthy, complex, and relatively expensive in terms of resources, reagents, and detection techniques. Computational methods have emerged during the past decade as a powerful strategy for the prediction of human pharmacokinetics. In this regard, a variety of useful in silico ADME models has been developed with different levels of complexity for the screening of large data sets of compounds, creating tools that are faster, simpler, and more cost-effective than traditional experimental procedures. 6-9

Quantitative structure-activity relationships (QSAR) employing both classical and modern technologies have

^{*} Corresponding author. Tel.: +55 16 3373 8095; fax: +55 16 3373 9881; e-mail: aandrico@if.sc.usp.br

proven useful in a large number of settings. 10,11 QSAR is a technology that generates descriptors based on molecular structures and uses computational algorithms to relate the key descriptors to the dependent property value of interest. 12 It is therefore possible to match these unique characteristics to pharmacokinetic properties, mainly due to the accumulation of suitable ADME data for model generation. 13,14 Human oral bioavailability, which is defined as the fraction of an administered dose of drug that reaches the systemic circulation, is a critical property to be considered during the early stages of discovery. Several reports in the literature indicate that there is a significant scientific and practical need for new tools for early prediction of oral bioavailability as well as other important pharmacokinetic properties. 15,16 In the present work, we have organized a data set of 302 structurally diverse molecules with known human oral bioavailability, and used the data to create predictive 2D QSAR models, employing the hologram QSAR (HOSAR) method. 17-19 The results of modeling this data set are reported herein.

2. Materials and methods

2.1. Computational approach

The QSAR analyses, calculations, and visualizations for HQSAR were performed using the SYBYL 7.2 package (Tripos Inc., St. Louis, USA) running on Red Hat Enterprise Linux workstations. A statistical cluster analysis was carried out with Tsar 3D version 3.3 (Accelrys, San Diego, USA) employing the complete linkage clustering method with no standardization as previously described. 18,19

2.2. Data set

The data set of 302 structurally diverse molecules used in the QSAR analyses was collected from the literature. ^{20–22} For convenience, the list of compounds along with the corresponding human oral bioavailability data are shown in Table 3. The 3D structures of the molecules employed in this work were constructed using CONCORD and standard geometric parameters available in the SYBYL 7.2 molecular modeling package.

2.3. Hologram QSAR

Statistical HQSAR modeling was carried out as previously described using the standard parameters implemented in SYBYL 7.2. ^{17–19,23,24} Briefly, HQSAR requires only 2D structures and the property value as input. In this method, each molecule in the training set is broken down into several unique structural fragments, which are then arranged to form a molecular hologram, an extended form of fingerprint that encodes all possible molecular fragments (e.g., linear, branched, and overlapping) and maintains a count of the number of occurrences of each fragment. Incorporation of information about each fragment, and each of its constituent subfragments, implicitly encodes 3D structural information, such as hybridization and chirality. ^{17,19,24} With the

transformation of the chemical representation of a molecule into its corresponding molecular hologram, this method requires no explicit 3D information (e.g., 3D structures, putative binding conformations, and molecular structural alignment). 17–19,25 HQSAR models can be affected by a number of parameters concerning hologram generation: hologram length, fragment size, and fragment distinction. Several combinations of fragment distinction were considered during the QSAR modeling runs. HQSAR analyses were performed by screening the 12 default series of hologram lengths. The influence of different fragment sizes was also investigated. The patterns of fragment counts from the training set molecules were then related to the experimental oral bioavailability data using full cross-validated r^2 (q^2) partial least squares (PLS) leave-one-out (LOO), and leave-manyout methods. 17-19,22,23 The predictive ability of the models was assessed by their q^2 values.

3. Results and discussion

3.1. Data set characterization

The data set of 302 compounds employed in this work is structurally diverse, containing enzyme inhibitors, receptor agonists and antagonists as well as other biologically active agents of several important therapeutic classes, including antibiotics, analgesics, antivirals, anticancers, antibacterials, antifungals, antidepressants, antiepileptics, antihypertensives, anti-inflammatories, antiparasitics, anxiolytics, antipsychotics, antispasmodics, among others. An example of the high chemical and pharmacological diversity of the data set is shown in Figure 1. Human oral bioavailability is represented as the percentage of an administered dose of a drug that reaches the systemic circulation after oral administration. When two or more values of oral bioavailability for the same compound were available or a value had a range, the average value was employed. In cases where large differences (>20%) between two or more values were found, the compounds were not incorporated in the data set. Training set compounds containing one asymmetric (chiral) center, for which the corresponding oral bioavailability was determined for the racemate, were considered as the individual enantiomers and modeled accordingly.

The distribution of the human oral bioavailability data for the complete data set is presented in form of a histogram in Figure 2. Although weighted toward the high-bioavailability end of the spectrum, values of bioavailability (%) are acceptably distributed across the range of values. Basically, three distinct groups can be seen in Figure 2, indicated as 'low' (\leq 40%, 74 compounds), 'intermediate' (41–80%, 127 compounds) and 'high' (>80%, 101 compounds) bioavailability values. These compounds were grouped in such a way to provide reasonable ranges for comparison reasons.

The selection of appropriate training and test sets is of critical importance in the generation of robust QSAR models. A hierarchical cluster analysis was carried out

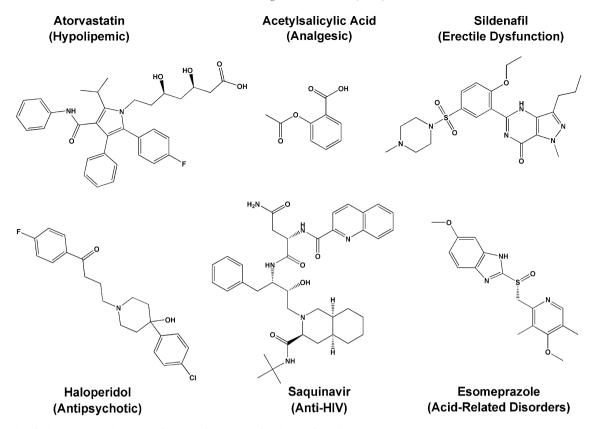
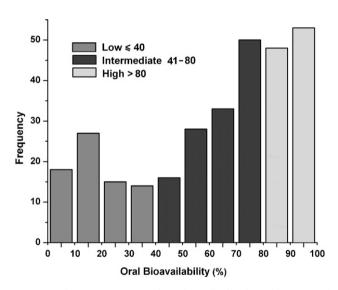
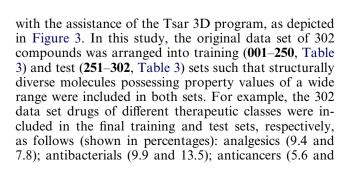




Figure 1. Chemical structure and therapeutic class of representative drugs of the data set.

Figure 2. Histogram representation of the distribution of human oral bioavailability for the 302 data set compounds.

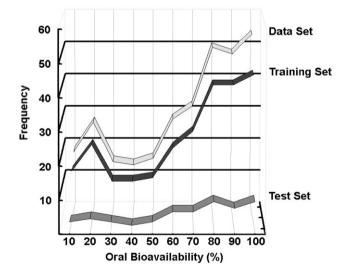


Figure 3. Data set, training set, and test set composition.

2.0); antidepressants (4.2 and 1.5); antiemetics (3.3 and 2.0); antihypertensives (11.8 and 15.6); anti-inflammatories (6.1 and 7.8); antilipemics (2.0 and 5.9); contraceptives (1.9 and 1.9); immunosuppressives (1.9 and 1.9); and others (43.9 and 40.1). Thus, the data set is suitable for HQSAR model development in terms of structural diversity, distribution of drug classes and property values. The training set was then used to generate the HQSAR models, while the test set was hold out for the process of model external validation.

3.2. HQSAR modeling

HQSAR investigations require selecting values for parameters that specify hologram length, as well as the size and type of fragments that are to be encoded. 17,19 Holograms were created using the standard parameters implemented in SYBYL 7.2. The generation of molecular fragments was carried out using the following fragment distinctions: atoms (A), bonds (B), connections (C), hydrogen atoms (H), chirality (Ch), and donor and acceptor atoms (DA). Several combinations of these parameters were considered using the fragment size default (4-7), as follows: A/B, A/B/C, A/B/C/H, A/B/C/ H/Ch, A/B/H, A/B/C/Ch, A/B/C/Ch/DA, A/B/DA, A/ B/C/DA, A/B/H/DA, A/B/C/H/Ch/DA, A/B/C/H/DA, and A/B/Ch/DA. HQSAR analysis was performed over the 12 default series of hologram lengths of 53, 59, 61, 71, 83, 97, 151, 199, 257, 307, 353, and 401 bins, using the fragment size default (4–7). The statistical results from the PLS analyses for the 250 training set compounds using the several fragment distinction combinations are summarized in Table 1.

The best statistical results were obtained using either A/ B/C $(q^2 = 0.52, r^2 = 0.89)$ or A/B/C/Ch $(q^2 = 0.53, r^2 = 0.89)$ $r^2 = 0.90$) as distinction information (models 2 or 6, respectively). The influence of different fragment sizes on the statistical parameters was further investigated for the HQSAR generated using A/B/C/Ch. Fragment size parameters control the minimum and maximum lengths of fragments to be included in the hologram fingerprint, therefore, a fundamental aspect is to be considered regarding the statistical generation of QSAR models. 17-19 These parameters can be adjusted to include larger or smaller fragments in the molecular holograms. As mentioned previously, the fragment size default (4–7), which has proved useful in a number of situations, was first used to derive the HQSAR models. The statistical results for the sequence of different fragment sizes evaluated (including, 2–5, 3–6, 4–7, 5–8, 6– 9, 7-10, 8-11, and 9-12) are summarized in Table 2.

Table 1. Results of HQSAR analyses for various fragment distinctions on the key statistical parameters using the fragment size default (4–7)

Model	Fragment distinction	Sta	Statistical parameters			
		q^2	r^2	N	HL	
1	A/B	0.43	0.60	5	53	
2	A/B/C	0.52	0.89	8	353	
3	A/B/C/H	0.50	0.81	8	257	
4	A/B/C/H/Ch	0.48	0.79	7	257	
5	A/B/H	0.46	0.75	7	401	
6	A/B/C/Ch	0.53	0.90	8	353	
7	A/B/C/Ch/DA	0.47	0.87	7	353	
8	A/B/DA	0.41	0.73	8	353	
9	A/B/C/DA	0.52	0.81	6	307	
10	A/B/H/DA	0.38	0.70	7	401	
11	A/B/C/H/Ch/DA	0.40	0.75	7	353	
12	A/B/C/H/DA	0.44	0.76	6	353	
13	A/B/Ch/DA	0.42	0.69	6	401	

 q^2 , cross-validated correlation coefficient. r^2 , noncross-validated correlation coefficient. SEE, noncross-validated standard error. N, optimal number of components. HL, hologram length.

Table 2. HQSAR analysis for the influence of various fragment sizes on the key statistical parameters using the fragment distinction A/B/C/Ch

Fragment size	Statistical parameters								
	q^2	r^2	SEE	N	HL				
2–5	0.42	0.70	16.11	6	307				
3–6	0.47	0.81	12.81	6	353				
4–7	0.53	0.90	9.14	8	353				
5–8	0.42	0.82	12.37	6	353				
6–9	0.47	0.81	12.60	7	151				
7–10	0.70	0.93	7.60	8	199				
8-11	0.44	0.83	11.95	7	199				
9-12	0.35	0.64	17.47	4	199				

 q^2 , cross-validated correlation coefficient. r^2 , noncross-validated correlation coefficient. SEE, noncross-validated standard error. N, optimal number of components. HL, hologram length.

The variation of fragment size led to the generation of a substantially better HQSAR model compared to that derived for the fragment size default (4–7). As it can be seen, the best statistical results ($q^2 = 0.70$, $r^2 = 0.93$) among all models were obtained with the fragment size 7–10. A similar procedure was applied for the evaluation of the fragment distinction A/B/C of model 2 (results not shown), but the results were not any better than those described for the HQSAR model 6. The stability of the best model (fragment distinction A/B/C/Ch, fragment size 7–10) was tested using 10 different data set splits, varying the relative distribution of the groups low—med—high. Values of q^2 between 0.66 and 0.70 were obtained indicating the high stability of the final model (results not shown).

In terms of validation of a QSAR model, a measure of internal consistency is available in the form of q^2 (Tables 1 and 2). However, the most important test of a QSAR model is its ability to predict the property value for new compounds. As the structure encoded in a 2D fingerprint is directly related to the human oral bioavailability of the training set molecules, HOSAR models should be able to predict the bioavailability of new structurally diverse compounds from its fingerprint. Thus, the predictive power of the best HQSAR model derived using the 250 training set molecules (fragment distinction: A/B/C/ Ch; fragment size: 7-10, Table 2) was assessed by predicting bioavailability values for 52 test set molecules, which were not included in the training set for model generation. What is needed is a measure of how close the actual data is to the predicted data of an external data set. The results obtained are presented in Table 3, while the graphic representation for the experimental versus predicted oral bioavailability values of both training (model generation) and test (external evaluation) sets are displayed in Figure 4.

The results show that the test set compounds, which represent the different structural features incorporated within the training set, are reasonably well predicted. The good agreement between experimental and predicted bioavailability values indicates the robustness of the HQSAR model. The predictive power ($r_{\rm pred}^2 = 0.85$) of the model generated is remarkable given the inherent complexity of the target property and the large chemical universe of

Table 3. Experimental, predicted, and residual values of human oral bioavailability for both training and test set compounds for the final HQSAR model

model									
No.	Compound	Exp ^a	Pred ^b	Res ^c	No.	Compound	Exp ^a	Pred ^b	Res ^c
Traini	ng set								
001	Abacavir ²²	86.00	79.66	6.34	002	Acetaminophen ²²	88.00	75.20	12.80
003	Acetylsalicylic acid ²²	68.00	74.15	-6.15	004	Albuterol ²² (S)	71.00	70.88	0.12
005	Almotriptan ²¹	70.00	69.11	0.89	006	Alosetron ²¹	55.00	64.95	-9.95
007 009	Anastrozole ²² Atomoxetine ²¹	84.00 63.00	86.12 77.19	-2.12 -14.19	008 010	Aprepitant ²¹ Atorvastatin ²¹	62.50 14.00	74.29 19.60	-11.79 -5.60
011	Atomoxeune Atovaquone 21	23.00	17.19	5.62	010	Bepridil ²³ (R)	60.00	63.56	-3.56
013	Bosentan ²¹	50.00	47.62	2.38	012	Bromocriptine ²²	4.50	-2.28	6.78
015	Budesonide ²³	11.00	21.23	-10.23	016	Bufuralol ²³ (R)	46.00	61.48	-15.48
017	Bufuralol ²³ (S)	46.00	58.41	-12.41	018	Bumetanide ²²	81.00	72.65	8.35
019	Bupropion ²³ (R)	70.00	76.94	-6.94	020	Bupropion ²³ (S)	70.00	64.66	5.34
021	Busulfan ²¹	80.00	71.51	8.49	022	Calcitriol ²²	61.00	61.44	-0.44
023	Candesartan ²¹ (R)	15.00	2.45	12.55	024	Candesartan ²¹ (S)	15.00	9.60	5.40
025 027	Carbamazepine ²² Cefazolin ²²	70.00 90.00	69.62 81.51	0.38 8.49	026 028	Cefaclor ²³ Cephalexin ²²	90.00 90.00	88.57 96.70	$ \begin{array}{r} 1.43 \\ -6.70 \end{array} $
027	Chlorambucil ²²	90.00 87.00	78.84	8.16	030	Chloramphenicol ²³	69.00	79.49	-0.70 -10.49
031	Chloramphenicol palmitate ²³	80.00	75.36	4.64	030	Chloroquine ²² (S)	80.00	79.12	0.88
033	Chlorpromazine ²²	32.00	24.71	7.29	034	Chlortetracycline ²³	27.50	19.59	7.91
035	Chlorthalidone ²² (R)	64.00	62.22	1.78	036	Cicloprolol ²³ (R)	100.00	92.67	7.33
037	Cicloprolol ²³ (S)	100.00	95.18	4.82	038	Cimetropium bromide ²³	2.00	22.22	-20.22
039	Ciprofloxacin ²¹	70.00	83.34	-13.34	040	Citalopram ²² (R)	80.00	87.92	-7.92
041	Citalopram ²² (S)	80.00	68.42	11.58	042	Clonidine ²²	60.00	74.50	-14.50
043	Clorazepate ²² (R)	91.00	91.27	-0.27	044	Clorazepate ²² (S)	91.00	92.96	-1.96
045 047	Chloroquine ²² (R) Cyclophosphamide ²²	80.00 74.00	77.87 72.82	2.13 1.18	046 048	Clozapine ²² Dapsone ²³	55.00 93.00	65.38 90.53	-10.38 2.47
047	Delavirdine ²¹	96.00	92.66	3.34	050	Diazepam ²²	100.00	87.63	12.37
051	Diflunisal ²³	100.00	90.31	9.69	052	Digitoxin ²³	88.50	86.82	1.68
053	Digoxin ²¹	95.00	90.23	4.77	054	Dihydroergosine ²³	10.00	6.35	3.65
055	Diltiazem ²¹	40.00	47.61	-7.61	056	Diphenhydramine ²²	72.00	81.68	-9.68
057	Disopiramide ²² (R)	83.00	70.21	12.79	058	Disopiramide ²² (S)	83.00	95.43	-12.43
059	Dixyrazine ²³ (S)	10.00	5.69	4.31	060	Domperidone ²³	14.00	14.34	-0.34
061	Doxapram 23 (R)	61.00	63.03	-2.03	062	Doxapram ²³ (S)	61.00	45.34	15.66
063 065	Doxazosin ²³ Drospirenone ²¹	65.00 76.00	62.11 76.08	$2.89 \\ -0.08$	064 066	Doxycycline ²² Dutasteride ²¹	93.00 60.00	90.60 73.93	2.40 -13.93
067	Eletriptan ²¹	62.50	62.38	0.12	068	Emtricitabine ²¹	93.00	82.78	10.22
069	Enalapril ²²	41.00	45.59	-4.59	070	Endralazine ²³	75.00	78.38	-3.38
071	Eproxindine ²³	70.00	66.72	3.28	072	Erythromycin ²²	35.00	40.74	-5.74
073	Estradiol valerate ²³	3.00	13.19	-10.19	074	Ethambutol ²²	77.00	82.66	-5.66
075	Ethinyl estradiol ²¹	40.00	38.26	1.74	076	Esomeprazole ²¹	90.00	96.50	-6.50
077	Famciclovir ²¹	77.00	70.43	6.57	078	Felodipine ²² (R)	15.00	6.13	8.87
079	Felodipine ²² (S)	15.00	4.82	10.18	080	Fenflumizole ²³	50.00	49.62	0.38
081	Fenfluramine ²³ (R) Flecainide ²³ (R)	89.00	83.38 82.15	5.62	082	Fenoprofen ²³ (R) Flecainide ²³ (S)	80.00	89.82	-9.82
083 085	Flucloxacillin ²³	95.00 49.00	38.61	12.85 10.39	084 086	Flucytosine ²¹	95.00 83.50	83.34 81.52	11.66 1.98
087	Flunisolide ²³	20.00	23.63	-3.63	088	Fluocortolone ²³	83.50	77.39	6.11
089	Flurbiprofen ²² (R)	92.00	85.47	6.53	090	Fluticasone ²¹	1.00	0.06	0.94
091	Gatifloxacin ²² (R)	96.00	98.47	-2.47	092	Gefitinib ²¹	60.00	61.81	-1.81
093	Gemifloxacin ²¹ (S)	71.00	72.86	-1.86	094	Glipizide ²²	95.00	92.13	2.87
095	Glyburide ²²	95.00	96.27	-1.27	096	Granisetron ²²	60.00	69.74	-9.74
097	Haloperidol ²²	60.00	59.64	0.36	098	Hydrochlorothiazide ²²	71.00	84.86	-13.86
099	Hydromorphone ²¹	24.00	21.00	3.00	100	Ibuprofen ²² (S)	80.00	72.21	7.79
101 103	Idarubicin ²² Irbesartan ²¹	28.00 70.00	34.18 77.05	-6.18 -7.05	102 104	Imipramine ²² Isradipine ²² (R)	42.00 19.50	53.33 14.26	-11.33 5.24
105	Itraconazole ²¹	55.00	54.72	0.28	104	Ketoprofen ²³ (S)	85.00	89.63	-4.63
103	Lamivudine ²²	86.00	86.69	-0.69	108	Lansoprazole ²² (R)	80.00	83.57	-3.57
109	Lansoprazole ²² (S)	80.00	83.57	-3.57	110	Letrozole ²²	99.90	98.34	1.56
111	LAAM ²²	47.00	50.76	-3.76	112	Levonorgestrel ²²	87.00	93.83	-6.83
113	Linezolid ²¹	100.00	95.28	4.72	114	Lormetazepam ²³ (R)	75.00	85.19	-10.19
115	Losartan ²¹	33.00	42.71	-9.71	116	Lovastatin ²²	5.00	15.83	-10.83
117	Melphalan ²² (R)	71.00	72.46	-1.46	118	Melphalan ²² (S)	71.00	64.79	6.21
119	Mepindolol ²³ (R)	82.00	82.63	-0.63	120	Mepindolol ²³ (S)	82.00	84.74	-2.74
121	Metergoline ²³	23.00	23.30	-0.30	122	Methacycline ²³	58.00	60.17	-2.17
123 125	Methadone ²² (R) Methimazole ²³	92.00 93.00	84.31	7.69	124 126	Methadone ²² (S) Methotrexate ²² (R)	92.00 70.00	88.91 64.41	3.09 5.59
123	ivicumnazoie	23.UU	79.60	13.40	120	wiemonexate (K)	70.00	04.41	3.39

Table 3 (continued)

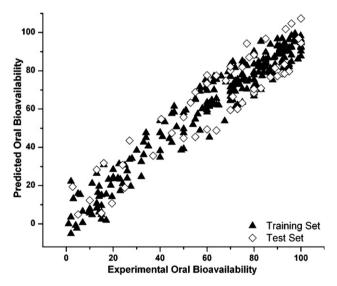

	mpound	Exp ^a	Pred ^b	Res ^c	No.	Compound	Exp ^a	Pred ^b	Res ^c
127 Me	ethylphenobarbital ²³ (R)	73.00	74.12	-1.12	128	Methylphenobarbital ²³ (S)	73.00	75.48	-2.4
	ethylprednisolone ²²	82.00	82.15	-0.15	130	Methysergide ²³	13.00	8.24	4.1
31 Me	etoclopramide ²²	76.00	84.05	-8.05	132	Metopimazine ²³	19.00	20.14	-1.
33 Me	exiletine ²² (R)	87.00	79.35	7.65	134	Mianserin ²³ (S)	20.00	28.41	-8.4
35 Mid	dalcipran ²³	84.00	79.19	4.81	136	Midodrine ²¹ (R)	93.00	81.10	11.
37 Mie	dodrine ²¹ (S)	93.00	80.82	12.18	138	Milrinone ²³	92.00	80.02	11.
	nocycline ²²	97.50	99.46	-1.96	140	Moexipril ²¹	13.00	10.74	2
	ontelukast ²¹ oxifloxacin ²¹	73.00	62.17	10.83	142	Morphine ²¹	40.00	47.75	-7.5
		90.00	93.29	-3.29	144	Mycophenolate ²¹	72.00	74.82	-2.5
	dolol ²³ (R)	34.00	45.13	-11.13	146	Nadolol ²³ (S)	34.00	47.68	-13.
	lbuphine ²²	11.00	4.75	6.25	148	Naloxone ²²	2.00	3.53	-1.
	ltrexone ²³	20.00	24.33	-4.33	150	Naratriptan ²²	67.50	53.78	13.
51 Ne	virapine ²¹	93.00	86.92	6.08	152	Nifedipine ²²	50.00	58.17	-8.
	modipine ²¹ (S)	13.00	26.35	-13.35	154	Nitrendipine ²³ (S)	16.00	30.91	-14.
	trofurantoin ²²	87.00	81.34	5.66	156	Nizatidine ²¹	70.00	77.26	-7.
	omifensine ²³ (S)	27.00	33.66	-6.66	158	Norfenfluramine ²³ (R)	85.00	84.41	0.
	orfenfluramine ²³ (S)	85.00	84.02	0.98	160	Norzimelidine ²³	66.00	77.27	-11.1
	loxacin ²² (R)	97.50	95.15	2.35	162	Ofloxacin ²² (S)	97.50	96.90	0.
	mesartan ²¹	26.00	27.64	-1.64	164	Ondansetron ²² (R)	62.00	63.33	-1.1
	dansetron ²² (S)	62.00	64.69	-2.69	166	Oseltamivir ²¹	75.00	83.14	-8.
	ytetracycline ²³	58.00	60.40	-2.40	168	Pantoprazole ²¹ (R)	77.00	74.51	2.
69 Par	ntoprazole ²¹ (S)	77.00	74.51	2.49	170	Penicillin G ²³	22.50	31.35	-8.
	ntazocine ²³	18.00	23.28	-5.28	172	Phencyclidine ²³	72.00	61.14	10.
	enobarbital ²³	96.00	92.26	3.74	174	Phenylethylmalonamide ²³	91.00	91.64	-0.
75 Phe	enytoin ²²	90.00	92.95	-2.95	176	Physostigmine ²³	6.00	15.33	−9 .
77 Pin	nozide ²²	50.00	39.30	10.70	178	Pinacidil ²³ (R)	57.00	71.58	-14.
79 Pin	nacidil ²³ (S)	57.00	69.34	-12.34	180	Pipotiazine ²³	26.00	23.90	2.
81 Pire	oxicam ²³	100.00	96.44	3.56	182	Pravastatin ²¹	17.00	1.88	15.
	ednisolone phosphate ²²	82.00	83.75	-1.75	184	Prednisone ²²	80.00	66.84	13.
	maquine ²³ (R)	96.00	84.76	11.24	186	Primaquine ²³ (S)	96.00	88.22	7.
	midone ²³	92.00	96.90	-4.90	188	Procyclidine ²³ (R)	75.00	77.83	-2.5
	ocyclidine ²³ (S)	75.00	75.21	-0.21	190	Promethazine ²³ (S)	25.00	30.67	-5.
	opiomazine ²³ (R)	33.00	36.15	-3.15	192	Propylthiouracil ²³	78.00	75.20	2.
	oscillaridin ²³	7.00	6.59	0.41	194	Protriptyline ²³	85.00	84.93	0.0
95 Pro	oxyphylline ²³ (R)	100.00	92.14	7.86	196	Proxyphylline ²³ (S)	100.00	94.69	5
97 Qu	inidine ²²	75.00	63.57	11.43	198	Raloxifene ²¹	2.00	-5.10	7.
99 Re	paglinide ²¹	56.00	57.45	-1.45	200	Ribavirin ²¹	64.00	65.56	-1.1
01 Rif	fampin ²¹	88.80	87.38	1.42	202	Rizatriptan ²¹	45.00	57.70	-12.7
03 Ro	efecoxib ²¹	93.00	94.59	-1.59	204	Saccharin ²³	84.00	82.37	1.0
05 Sac	quinavir ²¹	4.00	-0.83	4.83	206	Sildenafil ²¹	40.00	34.79	5.
07 Sire	olimus ²¹	14.00	6.18	7.82	208	Sobrerol ²³ (trans)	72.00	69.4	2.
	talol ²³ (R)	60.00	62.28	-2.28	210	Sotalol ²³ (S)	60.00	58.41	1.
11 Sta	ıvudine ²²	82.00	79.30	2.70	212	Suprofen ²³ (R)	92.00	80.85	11.
13 Sur	profen ²³ (S)	92.00	78.06	13.94	214	Tacrolimus ²¹	17.00	15.47	1
15 Tel	lenzepine ²³	54.00	51.91	2.09	216	Telithromycin ²¹	57.00	48.81	8.
	stosterone ²³	7.00	0.67	6.33	218	Theophylline ²¹	98.80	86.12	12.
	ngabine ²¹	90.00	88.68	1.32	220	Tiapamil ²³	22.00	23.94	-1.
	cainide ²² (R)	89.00	79.35	9.65	222	Tocainide ²² (S)	89.00	79.16	9.
23 Tol	lbutamide ²²	85.00	85.90	-0.90	224	Toliprolol ²³ (S)	90.00	80.19	9.
	piramate ²²	70.00	71.56	-0.56 -1.56	226	Topotecan ²²	32.00	32.55	−0.
27 To	rasemide ²³	91.00	89.60	1.40	228	Tramadol ²¹	75.00	70.63	-0. 4.
29 Tra	andolapril ²¹	10.00	7.92	2.08	230	Triamterene ²²	51.00	59.44	-8.·
29 11a 31 Tri	andolapin azolam ²²	44.00	44.55	-0.55	232	Trimethoprim ²²	63.00	70.08	−8. −7.
	ospium ²¹	9.60	6.38	3.22	234	Valganciclovir ²¹ (R)	59.40	75.30	-7.5
35 110 35 Val	lganciclovir ²¹ (S)	59.40	71.01	-11.61	236	Valproic acid ²¹	90.00	73.30 78.64	-13. 11.
	nalafaxine ²² (S)	45.00	42.54	2.46	238	Varproic acid Verapamil ²¹ (S)	13.50	16.39	-2.
	rdenafil ²¹	15.00		-0.07	238 240	Verapamii (S) Viloxazine ²³ (R)	85.00	83.58	-2. 1.
	oxazine ²³ (S)		15.07		240 242	Warfarin ²² (R)			
	oxazine ²³ (S) arfarin ²² (S)	85.00	82.07	2.93		vvariariii (K)	93.00	93.35	-0.
		93.00	90.07	2.93	244	Zaleplon ²¹	30.00	38.45	-8.·
	lovudine ²²	64.00	75.48	-11.48	246	Ziprasidone ²¹	60.00	74.32	-14.
47 Zol	lmitriptan ²¹	40.00	54.00	-14.00	248	Zolpiclone ²³ (R)	80.00	79.36	0.
49 Zol	lpiclone ²³ (S)	80.00	90.18	-10.18	250	Zolpidem ²²	72.00	73.19	-1.
est set									
51 Am	niodarone ²²	50.00	55.77	-5.77	252	Bepridil ²³ (S)	60.00	49.36	10.0
	ffeine ²³	100.00	94.56	5.44	254	Chlorthalidone ²² (S)	64.00	48.81	15.
		10.00	> 1.50	2.77	T	(0)	01.00	.0.01	10.

Table 3 (continued)

No.	Compound	Exp ^a	Pred ^b	Res ^c	No.	Compound	Exp ^a	Pred ^b	Res ^c
255	Cimetidine ²²	60.00	77.71	-17.71	256	Clarithromycin ²¹	50.00	44.82	5.18
257	Clavulanate ²²	75.00	63.22	11.78	258	Clofibrate ²²	95.00	79.76	15.24
259	Clonazepam ²¹	90.00	79.95	10.05	260	Cloxacillin ²³	37.00	35.60	1.40
261	Codeine ²³	55.00	45.49	9.51	262	Dixyrazine ²³ (R)	10.00	12.33	-2.33
263	Dronabinol ²¹	15.00	5.68	9.32	264	Escitalopram ²¹ (S)	80.00	68.42	11.58
265	Fenfluramine ²³ (S)	89.00	81.39	7.61	266	Fenoprofen ²³ (S)	80.00	88.32	-8.32
267	Fenoximone ²³	53.00	63.32	-10.32	268	Flecainide ²² (R)	70.00	82.15	-12.15
269	Fluphenazine ²²	2.70	19.42	-16.72	270	Flurbiprofen ²² (S)	92.00	78.71	13.29
271	Fluvastatin ²¹	24.00	30.79	-6.79	272	Gabapentin ²¹	60.00	73.38	-13.38
273	Gatifloxacin ²² (S)	96.00	104.69	-8.69	274	Gemifloxacin ²¹	71.00	66.47	4.53
275	Glimepiride ²²	100.00	107.33	-7.33	276	Ibuprofen ²² (R)	80.00	70.43	9.57
277	Isradipine ²² (S)	19.50	10.74	8.76	278	Ketoprofen ²³ (R)	85.00	96.79	-11.79
279	Levofloxacin ²²	99.00	96.89	2.11	280	Lorazepam ²² (R)	93.00	83.31	9.69
281	Lorazepam ²² (S)	93.00	78.53	14.47	282	Lormetazepam ²³ (S)	75.00	81.87	-6.87
283	Methotrexate ²² (S)	70.00	59.45	10.55	284	Mexiletine ²² (S)	87.00	76.76	10.24
285	Midazolam ²³	40.50	54.81	-14.31	286	Nateglinide ²¹	73.00	60.01	12.99
287	Nimodipine ²¹	13.00	28.34	-15.34	288	Nitrazepam ²³	78.00	87.02	-9.02
289	Nitrendipine ²³ (R)	16.00	31.80	-15.80	290	Nomifensine ²³ (R)	27.00	43.55	-16.55
291	Norethindrone ²³	64.00	77.49	-13.49	292	Pirazolac ²³	93.50	101.81	-8.31
293	Pramipexole ²¹	90.00	81.72	8.28	294	Prazosin ²²	68.00	74.90	-6.90
295	Procainamide ²²	83.00	70.91	12.09	296	Risperidone ²¹	70.00	80.11	-10.11
297	Ropinirole ²¹	55.00	68.84	-13.84	298	Simvastatin ²²	5.00	4.90	0.10
299	Spironolactone ²³	25.00	18.91	6.09	300	Tetracycline ²²	77.00	94.25	-17.25
301	Toliprolol ²³ (R)	90.00	77.18	12.82	302	Venlafaxine ²² (R)	45.00	47.45	-2.45

^a Experimental.

^c Residual, the difference between experimental and predicted values.

Figure 4. Plot of predicted versus experimental human oral bioavailability for training (250 molecules, model generation) and test sets (52 molecules, external validation).

structural types from which the model was derived. This model can be employed to assist the processes of chemical library design, virtual screening, and high-throughput screening. Compound libraries usually possess broad chemical diversity, therefore, in silico ADME models that are needed to screen these libraries should inevitably be global models designed to cover a broad scope of the chemical space. This was achieved by training the model with compounds from numerous chemical classes. The level of predictability is also adequate for the goal at this stage, given the chemical diversity and number of com-

pounds involved. However, the model possesses some limitations that should be considered when interpreting the results. Considering that the majority of the data set members are drugs, those compounds which do not follow Lipinski's Rule of 5²⁶ would not have significant representation in the data set. Poorly soluble and not orally bioavailable drugs are not included in the data set, therefore, the model is not suitable in this case. In addition, in silico ADME approaches face considerable challenges in drug design. For instance, human oral bioavailability is a difficult property to measure because of the complexity of the underlying biological processes. These include variability of the experimental data, determination of the standard error, and validation of the massive amount of data, among others. In general, in silico ADME models require constant refinement and updating to ensure their applicability to developing medicinal chemistry in a way to continuously improve their quality and predictive power.

4. Conclusions

Drug discovery programs generally focus on the development of orally administered drugs for reasons of convenience, acquiescence, and market perspectives. The use of computational models in the prediction of pharmacokinetic properties of compounds is growing rapidly in drug discovery due to the benefits they provide in throughput and early application in the design of new drug candidates. The use of in silico ADME models has progressed with significant improvements in predictability and simplification, among other relevant aspects with the advance of new technologies. The HQSAR

b Predicted.

model described herein shows both good internal and external consistency, and should be useful for the design of new drug candidates having improved oral bioavailability. Although such a model cannot completely replace in vitro and in vivo testing, it is a useful tool for rapidly screening compounds for their probable behavior, allowing early elimination of unfavorable candidates.

Acknowledgments

We gratefully acknowledge financial support from FA-PESP (The State of São Paulo Research Foundation), CNPq (The National Council for Scientific and Technological Development) and CAPES (The Brazilian Coordination for the Improvement of Higher Education Personnel), Brazil.

References and notes

- O'Brien, S. E.; de Groot, M. J. J. Med. Chem. 2005, 48, 1287.
- 2. Mager, D. E. Adv. Drug Deliv. Rev. 2006, 58, 1326.
- 3. van de Waterbeemd, H.; Gifford, E. Nat. Rev. Drug Discovery 2003, 2, 192.
- 4. Lombardo, F.; Gifford, E.; Shalaeva, M. Mini-Rev. Med. Chem. 2003, 3, 861.
- Saunders, K. C. Drug Discovery Today: Technol. 2004, 1, 373.
- 6. Ekins, S.; Nikolsky, Y.; Nikolskaya, T. *Trends Pharmacol.* Sci. **2005**, 26, 202.
- 7. Weiner, D. Drug Discovery Dev. 2006, 12, 54.
- 8. Hou, T.; Wang, J.; Zhang, W.; Xu, X. J. Chem. Inf. Model. 2007, 47, 208.
- Jensen, B. F.; Vind, C.; Padkjaer, S. B.; Brockhoff, P. B.; Refsgaard, H. H. F. J. Med. Chem. 2007, 50, 501.

- Leitão, A.; Andricopulo, A. D.; Oliva, G.; Pupo, M. T.; de Marchi, A. A.; Vieira, P. C.; da Silva, M. F. G. F.; Ferreira, V. F.; de Souza, M. C. B. V.; Sa, M. M.; Moraes, V. R. S.; Montanari, C. A. *Bioorg. Med. Chem. Lett.* 2004, 14, 2199.
- 11. Yoshida, F.; Topliss, J. G. J. Med. Chem. **2000**, 43, 2575.
- Hansch, C.; Kurup, A.; Garg, R.; Gao, H. Chem. Rev. 2001, 101, 619.
- Hansch, C.; Leo, A.; Mekapati, S. B.; Kurup, A. *Bioorg. Med. Chem.* 2004, 12, 3391.
- Jónsdóttir, S. Ó.; Jorgensen, F. S.; Brunak, S. Bioinformatics 2005, 21, 2145.
- Beresford, A. P.; Selick, H. E.; Tarbit, M. H. Drug Discovery Today 2002, 7, 109.
- Tetko, I. V.; Bruneau, P.; Mewes, H. W.; Rohrer, D. C.; Poda, G. I. *Drug Discovery Today* **2006**, *11*, 700.
- Castilho, M. S.; Postigo, M. P.; de Paula, C. B. V.; Montanari, C. A.; Oliva, G.; Andricopulo, A. D. *Bioorg. Med. Chem.* 2006, 14, 516.
- Salum, L. B.; Polikarpov, I.; Andricopulo, A. D. J. Mol. Graphics Modell. 2007, 25, 434.
- Honorio, K. M.; Garratt, R. C.; Andricopulo, A. D. Bioorg. Med. Chem. Lett. 2005, 15, 3119.
- Physicians' Desk Reference (PDR), 59th ed.; Thomson, 2005.
- Hardman, J. G.; Limbird, L. E.; Gilman, A. G.. Pharmacokinetic Data, 10th ed. In Goodman s The Pharmacological Basis of Therapeutics; McGraw-Hill: United States of America, 2001, p. 1924.
- Sietsema, W. K. Int. J. Clin. Pharmacol. Ther. Toxicol. 1989, 27, 179.
- 23. Honorio, K. M.; Garratt, R. C.; Polikarpov, I.; Andricopulo, A. D. *Lett. Drug Des. Discovery* **2006**, *3*, 261.
- HQSAR™ Manual, SYBYL 7.2, Tripos Inc., St. Louis, MO, 2003.
- 25. Castilho, M. S.; Guido, R. V. C.; Andricopulo, A. D. Lett. Drug Des. Discovery 2007, 4, 106.
- Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeny, P. J.; Feeney, P. J. Adv. Drug Delivery Rev. 1997, 23, 3.